山可律师网

机器学习中的概率统计应用实践

山可律师网 资料 2023-08-23 00:00:47 309790

├─第1章 概率统计课程导学
│      1-1 机器学习中的概率统计应用实践-课程导学.mp4
│      
├─第2章 统计思维基石:条件概率与独立性
│      2-1 本讲知识概览与导引.mp4
│      2-2 从概率到条件概率.mp4
│      2-3 条件概率与独立性.mp4
│      2-4 从独立到条件独立.mp4
│      2-5 全概率公式与贝叶斯基础.mp4
│      2-6 本讲小节及小讲预告.mp4
│         
├─第3章 聚焦基本元素:深入理解随机变量
│      3-1 本讲知识概览与导引.mp4
│      3-2 离散型随机变量及其分布列.mp4
│      3-3 二项分布及其PMF函数(含代码实战).mp4
│      3-4 二项分布的采样与数字特征(含代码实战).mp4
│      3-5 几何分布的性质与采样(含代码实战).mp4
│      3-6 泊松分布的性质与采样(含代码实战).mp4
│      3-7 连续型随机变量及其概率密度函数.mp4
│      3-8 正态分布的性质与采样(含代码实战).mp4
│      3-9 指数分布的性质与采样(含代码实战).mp4
│      3-10 均匀分布的性质与采样(含代码实战).mp4
│      3-11 本讲小节及小讲预告.mp4
│      
├─第4章 从一元到多元:探索多元随机变量
│      4-1 本讲知识概览与导引.mp4
│      4-2 多元随机变量的重要分布列.mp4
│      4-3 随机变量的独立性与条件独立性.mp4
│      4-4 多元随机变量的相关性与协方差矩阵.mp4
│      4-5 二元正态分布:从标准到一般(含代码实战).mp4
│      4-6 协方差与相关性的一个小问题(含代码实战).mp4
│      4-7 相关系数的概念和特性(含代码实战).mp4
│      4-8 随机变量独立与相关的概念辨析(含代码实战).mp4
│      4-9 多元高斯分布的参数特征(含代码实战).mp4
│      4-10 二元高斯分布几何特征实证分析(含代码实战).mp4
│      4-11 本讲小节及下讲预告.mp4
│      
├─第5章 极限思维:大数定律与蒙特卡罗方法
│      5-1 本讲知识概览与导引.mp4
│      5-2 从平均身高问题引入大数定律.mp4
│      5-3 大数定律背后的理论支撑.mp4
│      5-4 样本均值与随机变量期望的关系(含代码实战).mp4
│      5-5 样本均值的方差与分布(含代码实战).mp4
│      5-6 蒙特卡罗方法的应用背景.mp4
│      5-7 用蒙特卡罗方法近似计算圆面积(含代码实战).mp4
│      5-8 中心极限定理的基本概念和工程背景.mp4
│      5-9 中心极限定理的模拟与验证(含代码实战).mp4
│      5-10 本讲小结及下讲预告.mp4
│      
├─第6章 由静到动:随机过程导引
│      6-1 本讲知识概览与导引.mp4
│      6-2 随机过程应用背景概述.mp4
│      6-3 博彩中的随机过程(含代码实战).mp4
│      6-4 随机过程模拟:股票价格的总体分布(含代码实战).mp4
│      6-5 股票价格变化过程的展现(含代码实战).mp4
│      6-6 两类重要的随机过程.mp4
│      6-7 本讲小结及下讲预告.mp4
│      
├─第7章 马尔科夫链(上):转移与概率
│      7-1 本讲知识概览与导引.mp4
│      7-2 离散时间马尔科夫链的三要素.mp4
│      7-3 马尔科夫链的基本性质和矩阵表示.mp4
│      7-4 多步转移概率的计算.mp4
│      7-5 多步转移与概率乘法(含代码实战).mp4
│      7-6 路径概率问题举例.mp4
│      7-7 本讲小结及下讲预告.mp4
│      
├─第8章 马尔科夫链(下):极限与稳态
│      8-1 本讲知识概览与导引.mp4
│      8-2 马尔可夫过程的两种典型极限状态.mp4
│      8-3 马尔可夫链中的常返类和周期性.mp4
│      8-4 马尔可夫链的稳态及求法.mp4
│      8-5 本讲小结与下讲预告.mp4
│      
├─第9章 隐马尔科夫模型(上):明暗两条线
│       9-1 本讲知识概览与导引.mp4
│       9-2 隐马尔科夫模型导引.mp4
│       9-3 隐马尔科夫典型案例1:盒子摸球试验.mp4
│       9-4 隐马尔科夫典型案例2:小宝宝的日常生活.mp4
│       9-5 隐马尔科夫模型的外在特征和内核三要素.mp4
│       9-6 齐次马尔可夫性和观测独立性.mp4
│       9-7 本讲小结及下讲预告.mp4
│      
├─第10章 隐马尔可夫模型(下):概率估计与状态解码
│      10-1 本讲知识概览与导引.mp4
│      10-2 隐马尔可夫模型的两个研究主题.mp4
│      10-3 观测序列概率估计直观解法及其问题.mp4
│      10-4 用前向概率算法进行概率估计的原理.mp4
│      10-5 前向概率算法应用举例.mp4
│      10-6 前向概率算法的程序实现(含代码实战).mp4
│      10-7 状态解码问题的描述.mp4
│      10-8 维特比算法与最大路径概率.mp4
│      10-9 用维特比算法进行状态解码的理论基础.mp4
│      10-10 盒子摸球案例中的状态解码实战.mp4
│      10-11 维特比算法的程序实现(含代码实战).mp4
│      10-12 本讲小结及下讲预告.mp4
│      
├─第11章 推断未知:统计推断的基本框架
│      11-1 本讲知识概览与导引.mp4
│      11-2 统计推断的一个引例.mp4
│      11-3 总体、样本与统计量.mp4
│      11-4 估计误差与无偏估计(含代码实战).mp4
│      11-5 总体方差估计与有偏性(含代码实战).mp4
│      11-6 本讲小结及下讲预告.mp4
│      
├─第12章 探寻最大可能:极大似然估计法
│      12-1 本讲知识概览与导引.mp4
│      12-2 极大似然估计法的引例(含代码实战).mp4
│      12-3 似然函数的由来.mp4
│      12-4 扩展到连续型的似然函数.mp4
│      12-5 极大似然估计的思想.mp4
│      12-6 极大似然估计的计算方法.mp4
│      12-7 单参数极大似然估计案例.mp4
│      12-8 多参数极大似然估计案例.mp4
│      12-9 本讲小结及下讲预告.mp4
│      
├─第13章 贝叶斯统计推断:最大后验
│      13-1 本讲知识概览与导引.mp4
│      13-2 贝叶斯定理的回顾.mp4
│      13-3 贝叶斯推断的理论过程.mp4
│      13-4 贝叶斯推断实战-选取先验分布(含代码实战).mp4
│      13-5 贝叶斯推断实战-选择观测数据的分布(含代码实战).mp4
│      13-6 贝叶斯推断实战-计算后验分布.mp4
│      13-7 贝叶斯推断全过程模拟验证(含代码实战).mp4
│      13-8 关于共轭先验的问题.mp4
│      13-9 本讲小结及下讲预告.mp4
│      
├─第14章 近似推断的思想和方法
│      14-1 本讲知识概览与导引.mp4
│      14-2 统计推断的场景与关注重点.mp4
│      14-3 精确推断与近似推断的概念.mp4
│      14-4 随机近似方法的理论基础.mp4
│      14-5 接受-拒绝采样的基本方法.mp4
│      14-6 接受-拒绝采样中建议分布及参数选取(含代码实战).mp4
│      14-7 接受-拒绝采样过程实践(含代码实战).mp4
│      14-8 接受-拒绝采样的方法内涵分析.mp4
│      14-9 重要性采样的方法介绍.mp4
│      14-10 两类采样方法的问题与思考.mp4
│      14-11 本讲小结及下讲预告.mp4
│      
├─第15章 助力近似采样:基于马尔科夫链的采样过程
│      15-1 本讲知识概览与导引.mp4
│      15-2 马尔科夫链重点内容回顾.mp4
│      15-3 马尔科夫链平稳分布的理解.mp4
│      15-4 马尔科夫链进入稳态的过程演示(含代码实战).mp4
│      15-5 稳态过程的再剖析与意义分析.mp4
│      15-6 基于马尔科夫链的采样过程.mp4
│      15-7 基于马尔科夫链的采样过程实践(含代码实战).mp4
│      15-8 一个显而易见的难题.mp4
│      15-9 本讲小结及下讲预告.mp4
│      
└─第16章 马尔科夫链-蒙特卡洛方法详解
       16-1 本讲知识概览与导引.mp4
       16-2 问题的目标与细致平稳条件.mp4
       16-3 Metropolis-Hastings方法的基本思路.mp4
       16-4 M-H方法中的随机游走与接受因子.mp4
       16-5 M-H方法中建议矩阵Q的选取.mp4
       16-6 M-H方法的实践(含代码实战).mp4
       16-7 本讲小结.mp4


(1)因部分资料含有敏感关键词,百度网盘无法分享链接,请联系客服进行发送;
(2)如资料存在张冠李戴联系微信:hx-hx3 无条件退款!
(3)不用担心不给资料,如果没有及时回复也不用担心,看到了都会发给您的!放心!
(4)关于所收取的费用与其对应资源价值不发生任何关系,只是象征的收取站点运行所消耗各项综合费用